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ABSTRACT

Our previous research showed promising results when transferring
features learned from speech to train emotion recognition models
for music. In this context, we implemented a denoising autoencoder
as a pretraining approach to extract features from speech in two lan-
guages (English and Mandarin). From that, we performed transfer
and multi-task learning to predict classes from the arousal-valence
space of music emotion. We tested and analyzed intra-linguistic and
cross-linguistic settings, depending on the language of speech and
lyrics of the music. This paper presents additional investigation on
our approach, which reveals that: (1) performing pretraining with
speech in a mixture of languages yields similar results than for spe-
cific languages - the pretraining phase appears not to exploit particu-
lar language features, (2) the music in Mandarin dataset consistently
results in poor classification performance - we found low agreement
in annotations, and (3) novel methodologies for representation learn-
ing (Contrastive Predictive Coding) may exploit features from both
languages (i.e., pretraining on a mixture of languages) and improve
classification of music emotions in both languages. From this study
we conclude that more research is still needed to understand what is
actually being transferred in these type of contexts.

Index Terms— Contrastive predictive coding, speech emotion
recognition, music emotion recognition, representation learning,
transfer learning, multi-task learning.

1. INTRODUCTION

The need of including context-based information to the Music Infor-
mation Retrieval field, and particularly to Music Emotion Recogni-
tion (MER), has become critical [1]. In the case of music and emo-
tions, the strong relationship between speech and music could be
considered context [2], since our linguistic and cultural background
reflect fundamental differences in our perception of sound. This the-
ory is known as the vocal similarity hypothesis [3]. Furthermore,
the perception of speech, music, and sound share acoustic features
that are ”emotionally-relevant” [4]. Therefore, it is likely to assume
that the acoustic cues humans use to recognize emotions in sound
might be common for both speech and music [5, 6] - which could ex-
plain associating a yelling person and black metal with the emotion
anger. Recent cross-cultural studies demonstrate the lack of univer-
sality regarding the subjective perception of emotions [7, 8]. Given
that culture-specific characteristics drive emotional perception, our
research explores the transferability of acoustic features from speech
in a particular language to music. While vocal similarity is still be-
ing studied and debated, our approach is based on training a neural

network with speech in English and Mandarin, and then performing
transfer learning to classify emotions from music with lyrics in each
language. The present work is, additionally, an honest revisitation
from our previous work [9] and contributes with further research us-
ing novel deep learning architectures for unsupervised representation
learning.

The rest of the paper is structured as follows: in Section 2 we
discuss related work. Section 3 details the methodology of our study,
including the selected datasets and network architectures. Section 4
describes our results, which are later discussed in Section 5.

2. RELATED WORK

Research on the transfer of Speech Emotion Recognition (SER)
models to the MER regression task [10], has shown successful trans-
fer learning for recognition of emotions from speech in English to
classical music.1 In the case of SER, the work on linguistic research
has gained more importance lately: using a bag-of-audio-words ap-
proach to exploit linguistic features [14], combining speech-based
and linguistic classifiers [15], or using linguistic and acoustic cues
for end-to-end models [16]. The linguistic approach to emotion
recognition is mainly due to the fact that different emotion adjec-
tives will tend to have diverse meanings across cultures [17] and that
translation of words might result questionable [8]. However, this
topic has just recently started to be explored in MER.

A logical approach to handle the inherent subjectivity of emotion
annotations is to group annotations from similar annotators based
on personal characteristics [18, 19]. In our previous work [9], we
attempted to develop language-sensitive MER models by using lan-
guage both as a source of pretraining data (in the case of speech) and
as a personal characteristic (in the case of the lyrics of music). We
trained convolutional denoising autoencoders using time-frequency
representations of audio as input (i.e., mel-spectrograms), in order to
obtain a feature extractor trained on speech. Our aim was to automat-
ically extract features from speech in a particular language, which
could be then used to train a classifier of music with lyrics in the
same language.

We employed classifiers with four distinct classes related to the
arousal-valence emotion model. Russell popularized this emotion
taxonomy: arousal refers to the amount of energy from an emotion,
while valence refers to its positiveness or pleasantness [20]. For ex-
ample, an emotion such as happiness would have positive arousal
and valence, while anger would have positive arousal and nega-

1For a detailed review of SER, we refer the reader to [11, 12] and on MER
to [13].
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tive valence. Since the exact position of an adjective in this space
may be imprecise [21], we reduced the possibilities by defining four
categories of quadrants following [22]: Q1 (positive arousal - pos-
itive valence), Q2 (positive arousal - negative valence), Q3 (nega-
tive arousal - negative valence), and Q4 (negative arousal - posi-
tive valence). By employing multi-task learning (MTL), our clas-
sifier was trained simultaneously for four-class classification (in the
case of quadrants) and for binary classification (positive and negative
arousal and valence) in order to improve generalization [23, 24]. Our
results showed feasibility of our hypothesis: intra-linguistic settings
(e.g., pretraining on speech in English and fine-tuning with music in
English) yield better results than cross-linguistic settings (e.g., pre-
training on speech in Mandarin and fine-tuning with music in En-
glish). In this study, we collect those results and further explore the
impact of the pretraining stage, given that deep learning methodolo-
gies are prone to performance fluctuations due to pretraining varia-
tions.

The aim of the present study is twofold: (1) explore variations
from the unsupervised learning step in order to validate our initial
hypothesis, and (2) understand the impact of using different lan-
guages as pretraining data on transfer learning. Regarding (1), our
previous approach might result too coarse for the extraction of mean-
ingful features related to emotion. In the present work, we tested
novel architectures of representation learning - Contrastive Predic-
tive Coding (CPC) [25]. CPC is inspired on fundamental signal
processing techniques: instead of using a loss function to remove
the noise from the input representation, the architecture introduces a
contrastive loss that predicts if the following observations are con-
secutive or not. We propose the use of this architecture given the
temporal and anticipatory nature of both speech and music. With
respect to (2), we performed a mixture of speech using both English
and Mandarin datasets and modified the amount of pretraining data.
The following section refers to the particular settings used for our
study.

3. METHODOLOGY

3.1. Data

Since we used the same datasets as in our previous work [9], we
briefly describe their contents, train-test distributions, and process-
ing (see Table 1). Unlabeled speech data was used for pretraining
our models. To train models on English speech, the Librispeech data
set was used [26]. To train the models with Mandarin speech, the
AISHELL data set was used [27]. We randomly selected a subset
from each data set: 85% of the data was used to train, and 15%
was used for validation during pretraining. Labeled music data was
used to train our MER models. To train our English models, the 4Q-
emotion data set was used [22]. To train our Mandarin models, the
CH-818 data set was used [28]. Both data sets were split consider-
ing the number of classes into the following: 70% for training (85%
training, 15% validation), and 30% for testing. Since the CH-818
contained only 3 hours of data, we balance equal amount of speech
and music data (in hours) to the least amount available – we ran-
domly sampled all other datasets to the same quantity (Experiment
1 - see section 4.2.1). We also evaluated the effect of the amount
of pretraining data by randomly selecting 30 hours of speech data
(Experiment 2 - see section 4.2.2). Finally, a mixture speech dataset
was assembled by randomly selecting samples from the Librispeech
(English) and AISHELL (Mandarin) datasets with equal distribution
(mixture).

All datasets were processed with the libROSA library [29]: con-

verted to mono, downsampled to 16kHz, performed a Short-Time
Fourier Transform (window size: 1024 samples ∼ 46ms; hop size:
512 ∼ 23ms), and extracted a mel-scale spectrogram. The resulting
mel-spectrograms had a dimensionality of 128 mel-bands by 31 time
frames per second, extracted with a 50% overlap.

Speech Music

Dataset L A M 4Q CH

Language Eng. Man. Eng./
Man.

Eng./
Spa.

Man./
Can.

Annotation - - - Quad.
AV

Num.
AV

Size 100h 178h 278h 7.5h 2.96h
Exp. 1 3h 3h 3h 3h 3h
Exp. 2 30h 30h 30h 3h 3h

Table 1. Summary of speech and music data sets: L stands for Lib-
rispeech), A for AISHELL, M for mixture. AV refers to arousal-
valence, where Quad. refers to quadrants and Num. to continuous
values mapped to a quadrant. The datasets have languages in En-
glish, Mandarin, Spanish, and Cantonese.

3.2. Annotation analysis

We conducted a thorough agreement analysis on the annotations for
a subset of the 4Q-emotion dataset in [19]. Regarding the CH-818
dataset, we found consistent low performance using several classifi-
cation algorithms. Nonetheless, we continued to use it since it has
incorporated better standards for the annotation procedure and very
few datasets contain non-Western music annotated with emotions.
We performed interviews with native speakers regarding the quality
of these annotations [30]. The aim of these interviews was to better
understand the relationship between the semantic of the lyrics and
the emotion annotation. Results from the annotation analysis and
these interviews are detailed in Section 4.1.

3.3. Models

We previously implemented a classifier in [9], which is a reproduc-
tion of the work by Coutinho and Schuller [10]. Since this archi-
tecture did not exhibit language-sensitive attributes, we proposed
a sparse convolutional denoising auteoncoder (SCAE). The dimen-
sionality of an input mel-spectrogram feature (1 x 128 x 31) is in-
creased to (128 x 2 x 31) in the latent space, by three double conv-
layers augmenting the number of filters in the encoder: 32, 64, and
128, respectively. Dropout is set to 0.25 after every double conv-
layer to prevent overfitting. 2

For the present work, the Contrastive Predictive Coding archi-
tecture (CPC) was implemented using the same autoencoder design
as our previous work (see Figure 1). While any design of autoen-
coder may be used with CPC, 2D convolutional neural networks are
considered to extract meaningful features from audio [31]. The in-
tuition behind CPC is the existence of underlying shared informa-
tion between different parts of high-dimensional data. The autoen-
coder (AE) inputs a sequence of observations into a sequence of la-
tent representations h. Since this sequence of representations con-
tains high mutual information within neighboring samples – there
is a 50% overlap in the mel-spectrograms – using an autoregressive

2We refer the reader to [9] for a description of the SCAE architecture.
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Fig. 1. CPC implementation, adapted from [25]. Mel-spectrograms
have a dimensionality of 128 mel-bands x 31 frames per second.

model L allows to optimize a loss function based on the probabil-
ity that future samples (xt+1 and xt+2) are, in fact, consecutive. In
our implementation, we present four consecutive mel-spectrograms
to the network, and randomly assign two more that may follow or
not.3 We tested pretraining with 2 and 4 past samples (t ≤ 0), and
2 and 4 future samples (t > 0). For our data, experimental results
showed that using 4 past and 2 future samples improved pretrain-
ing performance. These results are consistent with methodologies
such as Linear Predictive Coding, where predicting less samples re-
sults beneficial. This unsupervised learning approach proves to be
faster to converge, since the optimization problem becomes a binary
classification task – the presented samples are either consecutive or
not. We employ a learning rate of 0.001 (4e-6 decay per epoch) with
Adam optimizer of binary cross-entropy. These values resulted from
Bayesian hyperparameter optimization.

Fig. 2. Multi-task learning approach: F stands for Flatten, FC for
fully connected, D for dropout.

After pretraining, transfer learning was implemented by extract-
ing the encoder and adding a flattening layer, 3 fully connected lay-
ers each with 512 neurons, followed by a Dropout layer each (see
Figure 2). To implement multi-task learning, we used three classifi-
cation blocks (Q stands for Quadrants, A for Arousal, and V for Va-
lence). Each block was made up from 2 fully connected layers (256
neurons), followed by a Dropout layer each, and a final output layer
with softmax activations. Each block represents a task classifier: (1)
quadrant prediction (4 classes, one per quadrant), (2) arousal predic-
tion (positive: Q1 and Q2, negative: Q3 and Q4), and (3) valence
prediction (positive: Q1 and Q4, negative: Q2 and Q3). Finally,
we obtained two variations of our models: (1) fixing the weights
from the encoder, and fine-tuning the network on the remaining lay-
ers at a learning rate of 0.0001 (Feat. Ext.), and (2) releasing the
weights of the whole network and continue training with a learning
rate of 0.0005 (Full). For the present work, we proposed two ar-
chitectures (i.e.,SCAE and CPC), each with two configurations (i.e.,

3https://github.com/juansgomez87/lang-sens-mer

Feat. Ext. and Full). We trained each model four times and report
macro-weighted averages of metrics across experiments.

4. RESULTS AND DISCUSSION

4.1. Annotation analysis

Our agreement study in [19] explored the impact of individual dif-
ferences on emotion labeling for the 4Q-emotion dataset. Partici-
pants annotated music that was previously tagged with a particular
emotion. Analysis shows overall low agreement for emotions such
as bitterness, fear, power, surprise, and transcendence. The idea
that reducing the number of categories for MER models results in
better performance justifies using four quadrants in AV space. Ad-
ditionally, language appears to have a central role when selecting
annotators for MER experiments. We found that using annotations
from participants who report understanding the lyrics consistently
improve classification performance [19].

The CH-818 data set also appears to have low agreement on the
annotations, which is expected for subjective annotations of emo-
tion. Interviews conducted with native speakers suggest that: (1)
there is disagreement between the semantic content of lyrics and the
musical cues for emotion - when evaluating lyrics, listeners tend
to use their comprehension to resolve valence, while the musical
structure or acoustic features from the dataset appear homogeneous
across quadrants, (2) there is disparity of annotations from fragments
belonging to Q2 (high arousal and low valence) and Q4 (low arousal
and high valence) - this reflects previous findings that valence eval-
uation is culture-specific and that agreement for these quadrants is
low, and (3) interviewees described a high dependence on lyrics to
assess the meaning of a song in Chinese pop culture, as opposed
to the musical features - further research should be centered on the
design of cross-cultural annotation methodologies.

4.2. Classifiers

4.2.1. Experiment 1

This experiment was centered on evaluating the effect of introducing
a mixture of speech as pretraining data and balancing all datasets to
the exact same amount of data (3 hours). In previous results, we re-
ported evidence that intra-liguistic models (e.g. pretrained with En-
glish speech and transfer learning with music in English - eng2eng)
result in better classification than cross-linguistic models (e.g. pre-
trained with English speech and transfer learning with music in Man-
darin - eng2man). Given space constraints, we offer a general de-
scription of the results from this experiment.4 Our results conflict
with our initial hypothesis: (1) in the case testing with the CH-
818 dataset, man2man - SCAE-Feat. Ext. performs similarly to
mix2man - SCAE-Full – the feature extractor trained exclusively on
speech is not necessarily extracting meaningful features for our clas-
sification purposes, (2) in the case of testing with the 4Q-Emotion
dataset, mix2eng - SCAE-Feat. Ext. yields better results than other
settings and all SCAE-Full models have similar results – we argue
that ”catastrophic forgetting” appears to predominate after releasing
the weights resulting in uniform performance across models, and (3)
both CPC-Feat. Ext. and CPC-Full models appear to show best re-
sults in cross-linguistic settings (eng2man and man2eng) and their
classification scores are substantially lower than our SCAE models.

4We refer the reader to the supplementary material for results from Ex-
periment 1.
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Test data: CH-818 Test data: 4Q-Emotion

man2man eng2man mix2man eng2eng man2eng mix2eng

P R F P R F P R F P R F P R F P R F

SCAE-Feat Ext
Q 0.46 0.55 0.50 0.42 0.58 0.49 0.52 0.57 0.51 0.50 0.50 0.47 0.54 0.53 0.50 0.53 0.53 0.51
A 0.61 0.61 0.61 0.64 0.65 0.62 0.64 0.64 0.64 0.67 0.66 0.65 0.68 0.67 0.66 0.68 0.67 0.67
V 0.77 0.78 0.77 0.78 0.78 0.77 0.79 0.79 0.79 0.77 0.72 0.71 0.78 0.76 0.76 0.79 0.77 0.77

SCAE-Full
Q 0.53 0.58 0.52 0.48 0.60 0.52 0.54 0.58 0.52 0.57 0.57 0.57 0.57 0.57 0.56 0.56 0.56 0.55
A 0.65 0.64 0.64 0.67 0.67 0.67 0.65 0.63 0.63 0.68 0.68 0.67 0.69 0.69 0.68 0.67 0.67 0.67
V 0.81 0.80 0.81 0.81 0.80 0.81 0.82 0.79 0.80 0.81 0.81 0.81 0.80 0.80 0.80 0.80 0.80 0.80

CPC-Feat Ext
Q 0.36 0.50 0.36 0.36 0.49 0.35 0.38 0.52 0.41 0.34 0.29 0.19 0.30 0.29 0.20 0.42 0.35 0.33
A 0.61 0.60 0.48 0.60 0.60 0.49 0.62 0.62 0.55 0.54 0.52 0.46 0.53 0.52 0.46 0.54 0.53 0.51
V 0.70 0.67 0.58 0.68 0.65 0.55 0.71 0.70 0.66 0.69 0.56 0.47 0.66 0.56 0.49 0.72 0.64 0.60

CPC-Full
Q 0.44 0.59 0.50 0.44 0.59 0.50 0.44 0.59 0.50 0.47 0.48 0.47 0.45 0.45 0.45 0.51 0.51 0.51
A 0.65 0.65 0.65 0.65 0.66 0.66 0.65 0.66 0.65 0.62 0.60 0.59 0.59 0.58 0.56 0.63 0.62 0.61
V 0.79 0.79 0.79 0.78 0.78 0.78 0.79 0.79 0.79 0.78 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.79

Table 2. Summary of results for Experiment 2 and multi-task learning of tasks: Q stands for quadrants, A for arousal, and V for valence. P
stands for precision, R for Recall, and F for F-score. F-scores are bold for the best scores for each classifier.

4.2.2. Experiment 2

This experiment was centered on evaluating the effect of the amount
of pretraining data. We increased the amount of data from 3 to 30
hours of speech. Deep learning algorithms tend to excel in particular
tasks, but usually require massive amounts of data. Classification re-
sults are summarized in Table 2. We observe two general trends: (1)
both SCAE-Full and CPC-Full models exhibit similar results across
all variations, (2) both SCAE-Feat. Ext. and CPC-Feat. Ext. appear
to have better results using mix2man and mix2eng instances, and (3)
SCAE-Feat. Ext. consistently shows better performance than CPC-
Feat. Ext. (≈ 10 percentage points in all scores).

With respect to (1), we argue to find a general trend of ”catas-
trophic forgetting” mentioned in the previous section. While the
feature extractor is trained only on speech, we hypothesized that it
should retain emotion-related representations from speech in each
language. In short, our argument is that if all tests converge to sim-
ilar classification metrics, the weights of the neurons are probably
converging to similar values – the pretraining step is probably not
having an impact on the final classification model. In this sense, it
could prove beneficial to use the supervised learning on the pretrain-
ing phase – pretraining on speech data labeled with emotion annota-
tions could help improve the transfer learning approach. Regarding
(2), we find of particular interest the fact that the mixture of speech
(mix2man and mix2eng) consistently results in better performance
for both SCAE and CPC models. Although this disproves our initial
hypothesis, we believe this to be of particular importance, since it is
consistent with results that greater diversity of the input data results
in improved generalization. As to (3), given that CPC has origi-
nally been tested with raw audio and images [25], further research is
needed regarding implementations using mel-spectrogram inputs.

5. CONCLUSIONS

In this work, we present in-depth results of our experiments into
MER language-sensitive models. We evaluated transfer learning
from speech to music, based on the experiments by [10, 9]. As proof
of concept, we completed our preliminary results by extending the
experiments to pretraining on a mixture of speech. Moreover, we al-
tered the amount of pretraining data in order to test the effect of data
quantity for pretraining. We evaluated the annotations from the CH-
818 dataset, which consistently performs poorly for the classification
task. We implemented a novel representation learning methodology
(Contrastive Predictive Coding), that allows faster convergence and

a more refined approach to learn a latent representation. Our find-
ings reveal that: (1) training on a mixture of speech (mix2man and
mix2eng) may improve the classification performance – we argue
that the diversity of the data presented during pretraining allows the
classifier to generalize better to music datasets, (2) our methodol-
ogy does not appear to learn meaningful emotion-related features
from speech that are transferred to emotion recognition – as future
work, we recommend to use emotional speech as pretraining data,
(3) further annotation analysis is needed for the CH-818 dataset –
short interviews with native speakers reveal low agreement with the
annotations, and (4) Contrastive Predictive Coding appears to yield
poorer classification results than a denoising approach – nonetheless
this architecture offers fast convergence and further investigation is
advised.

Recent research has found that feature reuse in transfer learning
is successful if low-level statistics from data are not fundamentally
disturbed when shuffling input representations [32]. Our input rep-
resentations are mel-spectrograms which are not being shuffled in
this process, but perhaps the success to achieve language-sensitive
MER model lies in using speech that also has emotional content. In
this way, low-level statistics of ”angry” sounds might still correlate
from speech in a given language to music from the same culture –
particularly when we overestimate our capacity to understand how
others feel if they speak an unfamiliar language.
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