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Introduction

Why music and emotions?

● Complex ➞ well researched
● Main reason ➞ understandable
● Categorization of music collections

   1
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Reference:
Yang & Chen. Music emotion recognition. CRC Press, 2011. 10

Introduction

Why music and emotions?

● Complex ➞ well researched
● Main reason ➞ understandable
● Categorization of music collections

What is music emotion recognition (MER)?

● Emotionally relevant features of music
● Perceived or induced emotions
● Supervised machine learning (Yang, 2011)
● “Ground truth” ➞ subjective
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Musical communication of emotions

Musician

Felt emotion?

Intention

Listener
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Why is music emotion recognition relevant?

● Perceived emotions:
○ Mood/emotion search
○ Indexing and categorization

● Induced emotions:
○ Mood regulation
○ Learning and well-being

19

Motivation    1
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Research questions for this dissertation

● For whom?
○ Subjectivity ➞ MIR

● What for?
○ Affective multimedia recommendation

20

Motivation    1
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Research questions for this dissertation

● For whom?
○ Subjectivity ➞ MIR

● What for?
○ Affective multimedia recommendation

● Individual judgment ➞ possible?

21

Motivation    1
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Reference:
Yang, Y.-H., et al. Music emotion recognition: the role of individuality. Proceedings of the International Workshop on Human-Centered 
Multimedia, pp. 13-22, 2007.

Why is human-centric ML reasonable for MER?

● For whom?
○ Person at the center ➞ PERSONALIZATION

● Role of individuality (Yang et al., 2007):
○ Group-based MER
○ Personalized MER

22

Context and goals    1
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Reference:
Herrera. MIRages: an account of music audio extractors, semantic description and content-awareness, in the three ages of MIR. PhD 
thesis, Universitat Pompeu Fabra, 2018.

Why is human-centric ML reasonable for MER?

● What for? 
○ Impact of ML on humans ➞ CONTEXT

● Age of context-aware music systems (Herrera, 2018):
○ Physiology
○ Cultural background
○ Activities while listening
○ Environmental context
○ Temporal context
○ Other data

23

Context and goals    1
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Why is human-centric ML reasonable for MER?

● Age of context-aware music systems (Herrera, 2018)
○ More context!

● Role of individuality (Yang et al., 2007):
○ More personalization!

● Hypothesis of this dissertation
○ More effort on human-centric approaches!

24

Context and goals    1
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Scientific Background 
and State of the Art2

Publication:

Gómez-Cañón, Cano, Eerola, Herrera, Hu, Yang & Gómez. Music Emotion Recognition: 
toward new, robust standards in personalized and context-sensitive applications. IEEE 
Signal Processing Magazine, 38(6), 2021.

   1

   2

   3

   4

   5

   6

   7

   8

Introduction

Background

Impact of language on 
emotion annotation

An attempt for 
language-sensitive MER

Active learning for 
personalized MER

Human-centered data collection 
for personalized MER

Personalization and 
polarization with MER

Conclusions

   

   

   

https://github.com/juansgomez87/datasets_emotion

https://github.com/juansgomez87/agreement-emotion
http://progress_bar_id


Lack of a unifying theory of emotions

Disgust (before):

● Universal

26

Definitions    2

Reference:
Ekman, P. An argument for basic emotions. Cognition and Emotion, 6(3), pp. 169-200, 1992.
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Lack of a unifying theory of emotions

Disgust (now):

● “Universal” (?)
● Risks?

27

Definitions    2

Barrett, L.F. How emotions are made: the secret life of the brain. Houghton Mifflin Harcourt, 2017.
Hupont, I., et al. The landscape of facial processing applications in the context of the EU AI Act and the development of trustworthy 
systems, Scientific Reports, 12, 2022.
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Lack of a unifying theory of emotions

Disgust (now):

● “Universal” (?)
● Risks?

Music:

● Description?
● Induced?
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Definitions    2
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Lack of a unifying theory of emotions

Disgust (now):

● “Universal” (?)
● Risks?

Music:

● Description?
● Induced?
● Subtle differences

29

Definitions    2

Barrett, L.F. How emotions are made: the secret life of the brain. Houghton Mifflin Harcourt, 2017.
Hupont, I., et al. The landscape of facial processing applications in the context of the EU AI Act and the development of trustworthy 
systems, Scientific Reports, 12, 2022.
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Emotions, moods, feelings…

30

Definitions    2
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Emotions, moods, feelings…

● Brief and intense reactions
● Synchronicity
● Focus on an object

31

Definitions

Reference:
Juslin. Musical emotions explained. Oxford University Press, 2019.
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Taxonomies of emotion

● Categorical or discrete
● Dimensional or continuous
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Definitions

Reference:
Juslin. Musical emotions explained. Oxford University Press, 2019.

   2

http://progress_bar_id


Taxonomies of emotion

● Categorical or discrete
● Dimensional or continuous
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Definitions

Reference:
Juslin. Musical emotions explained. Oxford University Press, 2019.
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Taxonomies of emotion

● Categorical or discrete
● Dimensional or continuous
● Ambiguity ⇋ Granularity

34

Definitions

= CONTENT = FELIZ ?

Reference:
Juslin. Musical emotions explained. Oxford University Press, 2019.
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Taxonomies of emotion

● Categorical or discrete
● Dimensional or continuous
● Ambiguity ⇋ Granularity
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Reference:
Juslin. Musical emotions explained. Oxford University Press, 2019.
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Traditional music emotion recognition systems
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Traditional music emotion recognition systems
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Reference:
Schedl, M., Flexer, A., Urbano, J. The neglected user in music information retrieval research. Journal of Intelligent Information Systems, 41, 
pp. 523-539, 2013. 39

Traditional music emotion recognition systems

Features

Features

Machine 
Learning

Annotations

Trained Models

Classification/ 
Regression Evaluation

TRAINING

TESTING

Music 
Context Feature 

Extraction

User Context

User 
Properties

Music 
Content

Dimensional
Arousal

Valence

1 - Taxonomy definition 2 - Dataset 
creation

3 - Feature extraction 4 - Evaluation

Step 3:
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Traditional music emotion recognition systems
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Problematic demo

For whom?

What for?
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Problematic demo

For whom?

What for?
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Reference:
Aljanaki, A., Yang, Y.-H, Soleymani, M. Developing a benchmark for emotional analysis of music. PLoS One, 12(3), pp. 1-22, 2017.
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Problematic demo

For whom?

What for?

Arousal, Valence ⊂ [-1, 1]
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Problematic demo

For whom?

What for?

Arousal 𝜇=0.12, 𝛔= 0.25        Valence 𝜇=-0.06, 𝛔=0.29    
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Problematic demo
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Problematic demo
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Reference:
Schedl, M. et al. On the interrelation between listener characteristics and the perception of emotions in classical orchestra music. IEEE 
Transactions on Affective Computing, 9(4), pp. 507-525, 2018. 57

Annotation analysis and group-based MER

Motivation

● Subjectivity is a complex issue (Schedl et al, 2018) ➞ Eroica symphony
● Pop and rock music - agreement by language?
● Group-based MER

Research questions

● Differences in annotation?
● Can we improve MER?

   3
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Results

Overall low inter-rater agreement

● 0.05 < 𝛂 < 0.58 𝛂
0 0.6 0.8 1

Research questions

● Differences in annotation?
● Can we improve MER?
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Results

Overall low inter-rater agreement

● 0.05 < 𝛂 < 0.58

Significant differences

● Emotional annotations vary across languages (Jackson et al., 2019)
● Group-based annotations are more similar amongst them

Reference:
Jackson, J.C. et al. Emotion semantics show both cultural variation and universal structure. Science, 1522, pp. 1517-1522, 2019.

𝛂
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Research questions

● Differences in annotation?
● Can we improve MER?
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Results

Overall low inter-rater agreement

● 0.05 < 𝛂 < 0.58

Significant differences

● Emotional annotations vary across languages (Jackson et al., 2019)
● Group-based annotations are more similar amongst them

Multi-label and group-based classification

● Up to 18 percentage points improvement in F1-scores
● Group-based models < general models

○ Except lyrics comprehension!

𝛂
0 0.6 0.8 1

Reference:
Jackson, J.C. et al. Emotion semantics show both cultural variation and universal structure. Science, 1522, pp. 1517-1522, 2019.

Research questions

● Differences in annotation?
● Can we improve MER?
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An attempt for 
language-sensitive MER4

Publications:

Gómez-Cañón, Cano, Herrera & Gómez. Transfer learning from speech to music: 
towards language-sensitive emotion recognition models. Proceedings of EUSIPCO 
2020, pp. 136-140.

Gómez-Cañón, Cano, Pandrea, Herrera & Gómez. Language-sensitive music emotion 
recognition models: are we really there yet? Proceedings of ICASSP 2021, pp. 576-580.
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Reference:
Coutinho, E., & Schuller, B. Shared acoustic codes underlie emotional communication in music and speech - evidence from deep learning. 
PLoS One, 12(6), 2017. 65

Language-sensitive MER

Motivation

● Speech as source of data (Coutinho & Schuller, 2017)
● If language is important, can we use it somehow?

Research question

● Transfer learning to create language-sensitive models?

   4
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● Pretraining with speech:
○ English
○ Mandarin
○ Mixture 50/50

66

Transfer learning from speech to music

English

Mandarin

Mixture

Pre-training
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● Pretraining with speech:
○ English
○ Mandarin (tonal language)
○ Mixture 50/50

67

Transfer learning from speech to music

English

Mandarin

Mixture

Pre-training
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● Pretraining with speech:
○ English
○ Mandarin (tonal language)
○ Mixture 50/50

68

Transfer learning from speech to music

English

Mandarin

Mixture

Pre-training

Reference:
Purves, D. Music as 
biology: the tones we 
like and why. Harvard 
University Press, 2017.
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● Pretraining with speech (U, S):
○ English
○ Mandarin 
○ Mixture 50/50

● Fine-tune on music (TL):
○ English 
○ Mandarin

69

Transfer learning from speech to music

English

Mandarin

Pre-training

English

Mandarin

Transfer 
Learning

Mixture
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Transfer learning from speech to music

● Two general settings:
○ Intra-linguistic
○ Cross-linguistic

70

English

Mandarin

English

Mandarin

Mixture

eng2eng

man2man

mix2eng

mix2man

eng2man

man2eng
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Transfer learning from speech to music

● Two general settings:
○ Intra-linguistic
○ Cross-linguistic

71

English

Mandarin

English

Mandarin

Mixture

eng2eng

man2man

mix2eng

mix2man

eng2man

man2eng
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Transfer learning from speech to music

Un-, self-supervised learning
● Sparse Convolutional Autoencoder

○ SCAE Feature Extractor
○ SCAE Full

● Contrastive Predictive Coding
○ CPC Feature Extractor
○ CPC Full

● Multi-task learning

72

   4
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Research questions

● Transfer learning to create 
language-sensitive models?

73

Results

No meaningful features are transferred

● Eng2eng and man2man do not outperform other models

Diversity in pre-training data

● Mix2eng and mix2man improve performance

   4
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Active learning for 
personalized MER5

Publication:

Gómez-Cañón, Cano, Yang, Herrera & Gómez. Let’s agree to disagree: consensus 
entropy active learning for personalized music emotion recognition. Proceedings of 
ISMIR 2021, pp. 237-245.
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Introduction

Background

Impact of language on 
emotion annotation

An attempt for 
language-sensitive MER

Active learning for 
personalized MER

Human-centered data collection 
for personalized MER

Personalization and 
polarization with MER

Conclusions

   

   

   

https://github.com/juansgomez87/consensus-entropy
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Personalization and music emotion recognition

Motivation

● Language-sensitive models 
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Reference:
Su, D. & Fung, P. Personalized music emotion classification via active learning. ACM workshop on MIR with user-centered and multi-modal 
strategies, 2012. 76

Personalization and music emotion recognition

Motivation

● Language-sensitive models
● Group-based MER ⇒ personalized MER

○ Use of active learning (Su & Fung, 2012)

   5
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Personalization and music emotion recognition

Motivation

● Language-sensitive models
● Group-based MER ⇒ personalized MER

○ Use of active learning (Su & Fung, 2012)

Research questions

● Can agreement be used as input?
● Which ML algorithms can be personalized?

Reference:
Su, D. & Fung, P. Personalized music emotion classification via active learning. ACM workshop on MIR with user-centered and multi-modal 
strategies, 2012.
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Settles, B. Active learning. Morgan and Claypool publishers, 2012.
Aggarwal et al., Active learning: a survey. Data classification algorithms and applications, CRC Press, 2014.
Zhang et al., Learning from crowdsourced labeled data: a survey. Artificial Intelligence review, 2016. 78

Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

   5
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples

Settles, B. Active learning. Morgan and Claypool publishers, 2012.
Aggarwal et al., Active learning: a survey. Data classification algorithms and applications, CRC Press, 2014.
Zhang et al., Learning from crowdsourced labeled data: a survey. Artificial Intelligence review, 2016.
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)
○ Hybrid (MIX)
○ Random baseline

U

Song 1

Song 2

Song 3

Output probability Entropy

Song n
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)
○ Hybrid (MIX)
○ Random baseline

U

Song 1

Song 2

Song 3

{Q1 : 1.0, Q2 : 0.0, Q3 : 0.0, Q4 : 0.0}

Output probability Entropy

0

Song n
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)
○ Hybrid (MIX)
○ Random baseline

U

Song 1

Song 2

Song 3

{Q1 : 1.0, Q2 : 0.0, Q3 : 0.0, Q4 : 0.0}

Output probability Entropy

0

{Q1 : 0.25, Q2 : 0.25, Q3 : 0.25, Q4 : 0.25} 1.39

Song n
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)
○ Hybrid (MIX)
○ Random baseline

U

Song 1

Song 2

Song 3

{Q1 : 1.0, Q2 : 0.0, Q3 : 0.0, Q4 : 0.0}

Output probability Entropy

0

0.69

{Q1 : 0.25, Q2 : 0.25, Q3 : 0.25, Q4 : 0.25}

{Q1 : 0.0, Q2 : 0.5, Q3 : 0.0, Q4 : 0.5}

1.39

Song n 0.13
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)
○ Hybrid (MIX)
○ Random baseline

U

Song 1

Song 2

Song 3

{Q1 : 1.0, Q2 : 0.0, Q3 : 0.0, Q4 : 0.0}

-  
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+

Output probability Entropy

0

0.69

{Q1 : 0.25, Q2 : 0.25, Q3 : 0.25, Q4 : 0.25}

{Q1 : 0.0, Q2 : 0.5, Q3 : 0.0, Q4 : 0.5}

1.39

Song n 0.13
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)
○ Hybrid (MIX)
○ Random baseline

U

Song 1

Song 2

Song 3

{Q1 : 1.0, Q2 : 0.0, Q3 : 0.0, Q4 : 0.0}

-  
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+

Output probability Entropy

0

0.69

{Q1 : 0.25, Q2 : 0.25, Q3 : 0.25, Q4 : 0.25}

{Q1 : 0.0, Q2 : 0.5, Q3 : 0.0, Q4 : 0.5}

1.39

Song n 0.13

q queries
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)

■ Assumption:
Disagreement ⇨ Boundaries

○ Hybrid (MIX)
○ Random baseline

U

Song 1

Song 2

Song 3

{Q1 : 1.0, Q2 : 0.0, Q3 : 0.0, Q4 : 0.0}

Entropy

0

0.69

{Q1 : 0.25, Q2 : 0.25, Q3 : 0.25, Q4 : 0.25}

{Q1 : 0.0, Q2 : 0.5, Q3 : 0.0, Q4 : 0.5}

1.39

Song n 0.13
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)

■ Assumption:
Disagreement ⇨ Boundaries

○ Hybrid (MIX)
○ Random baseline

U

-  
   

   
 E

nt
ro

py
   

   
   

+

Song 1

Song 2

Song 3

{Q1 : 1.0, Q2 : 0.0, Q3 : 0.0, Q4 : 0.0}

Relative frequency Entropy

0

0.69

{Q1 : 0.25, Q2 : 0.25, Q3 : 0.25, Q4 : 0.25}

{Q1 : 0.0, Q2 : 0.5, Q3 : 0.0, Q4 : 0.5}

1.39

Song n 0.13

q queries
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Personalization and music emotion recognition

Active learning

● Consensus entropy (1994):
○ Query-by-committee
○ Uncertainty sampling

● Informative samples:
○ Classifiers (MC)
○ Humans (HC)
○ Hybrid (MIX)
○ Random baseline

MIXMC RANDHC

-  
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nt
ro

py
   

   
   

+

For each epoch e:

q queries q queries q queries
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Personalization and music emotion recognition

Algorithms

● Probability outputs:
○ Gaussian naive bayes (GNB) 
○ Logistic regression (SGD)
○ Extreme gradient boosting (XGB) 
○ Short-chunk convolutional neural network (CNN)
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Reference:
Won, M., et al Evaluation of cnn-based automatic music tagging models. Proceedings of the 17th Sound and Music Computing conference, 
2020. 90

Personalization and music emotion recognition

Algorithms

● Probability outputs:
○ Gaussian naive bayes (GNB) 
○ Logistic regression (SGD)
○ Extreme gradient boosting (XGB) 
○ Short-chunk convolutional neural network (CNN) - (Won et al., 2020)
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Personalization and music emotion recognition

Algorithms

● Probability outputs:
○ Gaussian naive bayes (GNB) x 5
○ Logistic regression (SGD) x 5
○ Extreme gradient boosting (XGB) x 5
○ Short-chunk convolutional neural network (CNN) x 5

● 20 models per user:
○ Pre-trained to have different outputs
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Personalization and music emotion recognition

Algorithms

● Probability outputs:
○ Gaussian naive bayes (GNB) x 5
○ Logistic regression (SGD) x 5
○ Extreme gradient boosting (XGB) x 5
○ Short-chunk convolutional neural network (CNN) x 5

● 20 models per user:
○ Pre-trained to have different outputs

● 46 users:
○ More than 150 annotations

   5

http://progress_bar_id


93

Results

Simple agreement can be beneficial

● HC outperforms SOTA ~ 15 percentage points!

Research questions

● Agreement as input?
● Which ML algorithms?

   5
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Results

Simple agreement can be beneficial

● HC outperforms SOTA ~ 15 percentage points!
○ SOTA is not great           mean F-score: 0.35

Research questions

● Agreement as input?
● Which ML algorithms?
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Results

Simple agreement can be beneficial

● HC outperforms SOTA ~ 15 percentage points!
○ SOTA is not great           mean F-score: 0.35

Not all algorithms work

● GNB is naive
● SGD shows no differences across methods
● XGB have the highest amount of personalized models (HC > MC, HC ≠ RAND)
● CNN has best performance (HC > ALL)

○ 40 percentage points for some cases

Research questions

● Agreement as input?
● Which ML algorithms?
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Results

Simple agreement can be beneficial

● HC outperforms SOTA ~ 15 percentage points!
○ SOTA is not great           mean F-score: 0.35
○ Test with new data…

Not all algorithms work

● GNB is naive
● SGD shows no differences across methods
● XGB have the highest amount of personalized models (HC > MC, HC ≠ RAND)
● CNN has best performance (HC > ALL)

○ 40 percentage points for some cases

Research questions

● Agreement as input?
● Which ML algorithms?
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Human-centered data 
collection for personalized MER6

Publication:

Gómez-Cañón, Gutiérrez-Páez, Porcaro, Porter, Cano, Herrera, Gkiokas, Santos, 
Hernández-Leo, Karreman & Gómez. TROMPA-MER: an open dataset for personalized 
music emotion recognition. Journal of Intelligent Information Systems, 2022.
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Introduction

Background

Impact of language on 
emotion annotation

An attempt for 
language-sensitive MER

Active learning for 
personalized MER

Human-centered data collection 
for personalized MER

Personalization and 
polarization with MER

Conclusions

   

   

   

https://github.com/juansgomez87/vis-mtg-mer
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Human-centered data collection

Motivation

● Consensus entropy works! 
○ Imbalanced classes

● Citizen science
● Datasheet to a MER dataset (Gebru et al., 2021)

○ Explain disagreement to researchers!

Research questions

● Differences of emotion judgments (perceived and induced)?
● Can consensus entropy generalize?

Reference:
Gebru, T. et al. Datasheets for datasets.  Communications of the ACM, 64(12), pp. 86-92, 2021.
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Music enthusiasts platform

● TROMPA EU project
● Musical training
● Diverse annotations

○ Perceived, induced, free-text, 
native language..

● Reasoning behind annotations
● Explicit feedback

○ Personalization
○ Music recommendation

99

Human-centered data collection    6
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Human-centered data collection

Individual differences
(English, Spanish, Italian, Dutch, Mandarin)

Free-text and forced-choice Pick a Mood

   6
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Human-centered data collection

Music from West Africa - 1 week
23 participants - 655 annotations 

Music from Latin America - 4 weeks
26 participants - 183 annotations

Music from the Middle East - ongoing…

   6
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Appendix B:
Gutiérrez-Páez et al., Emotion annotation of music: a citizen science approach. Proceedings of the Collaboration Technologies and Social 
Computing conference, pp. 51-66, 2021. 102

Human-centered data collection

Incentivization strategies…

Music from West Africa - 1 week
23 participants - 655 annotations 

Music from Latin America - 4 weeks
26 participants - 183 annotations

Music from the Middle East - ongoing…

   6

http://progress_bar_id


Online personalization

● Random assignment
● Personalized recommendations
● CNN not viable

○ GNB, SGD, XGB

Offline evaluation

● 36 users, over 80 annotations
● All methods
● Evaluate q and e

103

Human-centered data collection

Annotations
MIXO
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RAND

HC

O
ffl

in
e

HC method
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Imbalanced classification

104

Human-centered data collection

HC
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For each epoch e:

4 queries
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Imbalanced classification

105

Human-centered data collection

HC
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For each epoch e:

4 queries
Q1 Q2 Q3 Q4

?
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Imbalanced classification

● Bias in models and listeners
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Human-centered data collection
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For each epoch e:

4 queries
Q1 Q2 Q3 Q4
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Imbalanced classification

● Bias in models and listeners

Sort by class!

107

Human-centered data collection

HC

-  
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+

For each epoch e:

4 queries

Q1 Q2 Q3 Q4

Step 1: Sort probabilities/frequencies by class:
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Imbalanced classification

● Bias in models and listeners

Sort by class!
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Human-centered data collection

HC

-  
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+

For each epoch e:

4 queries

Q1 Q2 Q3 Q4

Step 1: Sort probabilities/frequencies by class:

Step 2: Select data instances with highest 
entropy from each matrix
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Imbalanced classification

● Bias in models and listeners

Sort by class!
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Human-centered data collection

HC

-  
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+

For each epoch e:

4 queries

Q1 Q2 Q3 Q4

Step 1: Sort probabilities/frequencies by class:

Step 2: Select data instances with highest 
entropy from each matrix

Q1 Q2 Q3 Q4 ?
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Imbalanced classification

● Bias in models and listeners

Sort by class!

● Diminish likelihood of imbalance
● q = k x num_class

110

Human-centered data collection

HC

-  
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+

For each epoch e:

4 queries

Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4

Step 1: Sort probabilities/frequencies by class:

Step 2: Select data instances with highest 
entropy from each matrix

!
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Results

2160 trained classifiers: 36 users × 3 classifiers × 5 models per pre-training split × 4 consensus 
entropy methods

d.f. = 179, statistical significance p < 0.0125 with Bonferroni correction
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Results

2160 trained classifiers: 36 users × 3 classifiers × 5 models per pre-training split × 4 consensus 
entropy methods

d.f. = 179, statistical significance p < 0.0125 with Bonferroni correction
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Human-centered data collection

Datasheet: https://trompa-mtg.upf.edu/vis-mtg-mer/

   6
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Results

Generalized lack of agreement

● Illusion of universality ➞  averaging
● Listeners get confused
● Enriched dataset ➞ greater response diversity

○ Broad AV ➞ perceived emotion
○ Specific, free-text, native ➞ induced emotion

Personalization 

● HC and MIX methods are significantly better than RAND 
● Embracing subjectivity

Research questions

● Difference in judgment?
● Can HC generalize?
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Personalization and 
polarization with MER7

Gómez-Cañón, Lennie, Eerola, Aragón, Cano, Herrera & Gómez. Polarization through 
Colombian not-so-popular music and algorithms: appraisal guided musically induced 
emotions. Music and Science (under review), 2022.

Publications & research stay:

Gómez-Cañón, Cano, Herrera & Gómez. Personalized musically induced emotions of 
not-so-popular Colombian music. Human centered AI Workshop at NeurIPS 2021, pp. 
1-5.
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Conclusions
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Personalization and polarization

Motivation

● Consensus entropy works! 

   7
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Personalization and polarization

Motivation

● Consensus entropy works! 

   7
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Motivation

● Consensus entropy works! 
● Negative emotions?
● User profiling?
● Induced emotions - goal-directed mechanisms (Lennie & Eerola, 2022)

○ Test psychological theories

Research questions

● Do political values affect musically induced emotions?
● Reveal sensitive information from a listener?

118

Personalization and polarization

Reference:
Lennie, T. and Eerola, T. The CODA model: a review and skeptical extension of the constructionist model of emotional episodes induced by 
music.  Frontiers in Psychology, 13, 2022.
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Personalization and polarization

Historical context:
● More than 420.000 violent deaths
● 11 million Colombians displaced
● Illegal armies left-wing FARC and 

right-wing AUC
● Political identities:

○ Not-so-popular music (?)
○ Functionalities are different!
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Personalization and polarization

Musical styles:
● FARC-songs

○ Canción social or vallenato
● AUC-songs

○ Corridos

FARC 
songs

AUC 
songs
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Personalization and polarization

Musical styles:
● FARC-songs

○ Canción social or vallenato
● AUC-songs

○ Corridos
● Strong political content in lyrics

○ Source separation

FARC 
songs

AUC 
songs

AUC songs 
NO LYRICS

FARC songs 
NO LYRICS
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Personalization and polarization

Musical styles:
● FARC-songs

○ Canción social or vallenato
● AUC-songs

○ Corridos
● Strong political content in lyrics

○ Source separation

Personalization:
● Consensus entropy MC
● Topic modeling

○ Word frequency + Logistic 
regression

FARC 
songs

AUC 
songs

AUC songs 
NO LYRICS

FARC songs 
NO LYRICS

MER Personalization 
Algorithm

Audio

Lyrics
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Personalization and polarization

Musical styles:
● FARC-songs

○ Canción social or vallenato
● AUC-songs

○ Corridos
● Strong political content in lyrics

○ Source separation

Personalization:
● Consensus entropy MC
● Topic modeling

Hypothesis (pilot):
● Political stance 

FARC 
songs

AUC 
songs

AUC songs 
NO LYRICS

FARC songs 
NO LYRICS

MER Personalization 
Algorithm

Participants 
(Right-leaning)

Participants 
(Left-leaning)

Participants 
(Centre-leaning)

Audio

Lyrics
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Personalization and polarization

Musical styles:
● FARC-songs

○ Canción social or vallenato
● AUC-songs

○ Corridos
● Strong political content in lyrics

○ Source separation

Personalization:
● Consensus entropy MC
● Topic modeling

Hypothesis (pilot):
● Political stance 
● Intrinsic goals

FARC 
songs

AUC 
songs

AUC songs 
NO LYRICS

FARC songs 
NO LYRICS

MER Personalization 
Algorithm

Participants 
(Right-leaning)

Participants 
(Left-leaning)

Participants 
(Centre-leaning)

Audio

Lyrics

A

V

   7

http://progress_bar_id


125

Personalization and polarization

Musical styles:
● FARC-songs

○ Canción social or vallenato
● AUC-songs

○ Corridos
● Strong political content in lyrics

○ Source separation

Personalization:
● Consensus entropy MC
● Topic modeling

Hypothesis (pilot):
● Political stance 
● Intrinsic goals

FARC 
songs

AUC 
songs

AUC songs 
NO LYRICS

FARC songs 
NO LYRICS

MER Personalization 
Algorithm

Participants 
(Right-leaning)

Participants 
(Left-leaning)

Participants 
(Centre-leaning)

Audio

Lyrics

A

V

A

V
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Personalization and polarization

Musical styles:
● FARC-songs

○ Canción social or vallenato
● AUC-songs

○ Corridos
● Strong political content in lyrics

○ Source separation

Personalization:
● Consensus entropy MC
● Topic modeling

Hypothesis (pilot):
● Political stance 
● Intrinsic goals

FARC 
songs

AUC 
songs

AUC songs 
NO LYRICS

FARC songs 
NO LYRICS

MER Personalization 
Algorithm

Participants 
(Right-leaning)

Participants 
(Left-leaning)

Participants 
(Center-leaning)

<-?->

Audio

Lyrics

A

V

A

V

A

V
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Personalization and polarization

Musical styles:
● FARC-songs

○ Canción social or vallenato
● AUC-songs

○ Corridos
● Strong political content in lyrics

○ Source separation

Personalization:
● Consensus entropy MC
● Topic modeling

Hypothesis (pilot):
● Political stance 
● Intrinsic goals
● Methodology:

○ RWA, SDO, Colombian-specific
○ N = 52, during elections…

FARC 
songs

AUC 
songs

AUC songs 
NO LYRICS

FARC songs 
NO LYRICS

MER Personalization 
Algorithm

Participants 
(Right-leaning)
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● Un- or self-supervised pre-training is too coarse
○ Language-sensitive MER is a 

Personalization for MER

● Human consensus entropy works!
○ Not all models are effectively personalized

● Citizen science of music and emotions from the Global South
○ Low agreement ➞ rich response diversity ➞ opportunity to learn better!

Ethical considerations

● Misuse/manipulation/profiling:
○ Unfair digital asymmetries ➞ “colonial value and power paradigms”
○ Regulation over emotion recognition
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Final remarks

“And which are the harmonies 
expressive of sorrow?

You are musical and can tell me.

The harmonies which you mean are the 
mixed or tenor

Lydian, and the full-toned or bass 
Lydian and such alike.”

Plato, Republic Book III (307 BCE)
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● Use?
● Feelings, perceptions, engagement?
● Enjoyment?

   8

http://progress_bar_id


WEIRD history, research, researchers, and listeners

● How music is used, taught, learned?
● Magnificently diverse and interdisciplinary

○ Decolonize our own minds in the GS (Smit et al., 2022)

Problematic categorization

● “Skill to understand our environment”
● Representations vs. experiences
● “Expert” judgments (Kahneman et al., 2022)

○ Bias and noise
○ Overestimate agreement, underestimate noise

More human-centric efforts in AI

● Thought on personalization

143

Final remarks

What for?

   8

http://progress_bar_id


WEIRD history, research, researchers, and listeners

● How music is used, taught, learned?
● Magnificently diverse and interdisciplinary

○ Decolonize our own minds in the GS (Smit et al., 2022)

Problematic categorization

● “Skill to understand our environment”
● Representations vs. experiences
● “Expert” judgments (Kahneman et al., 2022)
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More human-centric efforts in AI

● Thought on personalization
● Just beginning…
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